Characteristics of fish oil biodiesel with the impact of diesel fuel addition on a CI engine
Authors
Abstract:
The present study focuses on the optimization in the use of non-petroleum fuel derived from waste fish oil fuels, as a replacement for petroleum diesel fuel for compression ignition engine. The study comprises of comparison between results of fish oil biodiesel-diesel blends on a compression ignition engine. Fuel properties such as viscosity, density, heat value of fuel, cetane number and a flash point of fish oil biodiesel and its blends with diesel were studied. The fish oil biodiesel (60, 40, 20, and 0%) – diesel (40, 60, 80 and 100%) are blended at volume basis. The results shows reduction in thermal efficiency, temperature, particulate matter and nitrogen oxides emission; while showing an increase in higher specific fuel consumption, ignition delay, carbon dioxide and smoke emissions. The B20 fuel blend improves BTE by 4.7%, CO2 emissions has been increased by 2.56%, while SFC is lowered by 7.92% as compared to diesel fuel. In biodiesel blend (B20) the highest reduction in NOx by 14.9%, particulate by 4.22% is observed although smoke emission slightly rises with increase in fish oil in the blends, as compared to diesel fuel.
similar resources
Investigation of the Effects of JP-4 Addition to Biodiesel-Diesel Blends on the Performance Characteristics of a Diesel Engine
In this study, the effects of JP-4-biodiesel-diesel blends and engine operating parameters on the performance characteristics of a diesel engine were investigated. The experimental tests were performed on a four-cylinder DI diesel engine. The Mixture-RSM method was applied to develop the mathematical models based on the experimental data. The results showed that the fitted models could be prope...
full textPrediction and Comparison of the Effect of N-butanol and Ethanol Addition to the Biodiesel-diesel Fuel Mixture on the Performance and Emissions Characteristics of a Diesel Engine
The main objective of this research is to study the effects of n-butanol and ethanol addition to the biodiesel-diesel fuel mixture on the performance and emission characteristics of a CI engine. The experimental tests were performed on a diesel engine. The RSM (Response Surface Methodology) method was used to develop mathematical models based on experimental data. According to the results, the ...
full textEmission Characteristics of a Diesel Engine fueled with Diesel-biodiesel-JP-4 Blends
The main objective of this research is to study the effects of JP-4-biodiesel-diesel fuel blends and operating parameters on the emission characteristics of a CI engine. The experimental tests were performed on a four-cylinder DI diesel engine. The Mixture-RSM method was used to develop mathematical models based on experimental data. The results showed that with the increase of the biodiesel pr...
full textModeling the effects of biodiesel-diesel fuel blends on CO2 emission of a diesel engine by response surface methodology
Nowadays biodiesel is receiving more attention as a most important renewable energy for using in diesel engines. Inthis research, the application of Response Surface Methodology (RSM) was highlighted to investigate the effects of biodiesel-diesel blends (B0, B20, B50 and B100), engine operating parameters (engine load and speed) on CO2 emission of a diesel engine. The experiments were conducte...
full textCharacteristics of carbonyl compounds emission from a diesel-engine using biodiesel–ethanol–diesel as fuel
Characteristics of carbonyl compounds (carbonyls) emissions from biodiesel–ethanol–diesel (BE–diesel) were investigated in a Commins-4B diesel engine and compared with those from fossil diesel. Acetaldehyde was the most abundant carbonyls in the exhaust, followed by formaldehyde, acetone, propionaldehyde and benzaldehyde. Apliphatic carbonyls emitted from BE–diesel were higher than those from d...
full textPerformance and Emission Characteristics of a Diesel Engine with Cottonseed Oil Plus Diesel Oil Blends
aIn the present study a 4-stroke 5hp diesel engine was tested with Diesel oil plus cottonseed oil blends. The blends in different proportions (10 to 50 percent by volume) were tested at constant speed of 1500 rpm. The said engine is operated at different loads and characteristics like Brake power, Brake thermal efficiency, specific fuel consumption etc. Engine performance for blends resulted in...
full textMy Resources
Journal title
volume 10 issue 1
pages 245- 256
publication date 2020-09-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023